Acclimatisation of key physiological processes in the cold-water corals *Lophelia pertusa* and *Madrepora oculata* over their ambient temperature range

Malik S. Naumann\(^1,2\), Covadonga Orejas\(^3\) and Christine Ferrier-Pagès\(^1\)

\(^1\)Centre Scientifique de Monaco, Avenue Saint Martin, 98000 Monaco, Principality of Monaco, \(^2\)Present address: Leibniz Center for Tropical Marine Ecology (ZMT), Coral Reef Ecology (CORE), Fahrendtstrasse 6, 28359 Bremen, Germany, \(^3\)Instituto Español de Oceanografía, Centro Oceanográfico de Santander, Promontorio de San Martin s/n, 39004 Santander, Spain

Introduction

- *L. pertusa* & *M. oculata*: Key cold-water coral (CWC) reef-builders
- Both species thrive at ambient water temperatures of 4 – 14 °C
- Effects of temperature on distribution patterns still in question
- Maintain *L. pertusa* and *M. oculata* over natural temperature range
- Investigate influence of ambient temperature on CWC physiology
- Evaluate temperature effects on key CWC physiological processes

Methods

Lophelia pertusa & *Madrepora oculata*

- Cosmopolitan species, occur in Med at up to 14 °C
- *L. pertusa*: depth range: 39–2775 m, size: \(\leq 1.5\) m
- *M. oculata*: depth range: 55–1950 m, size: \(\leq 0.75\) m
- Laboratory incubations: After each monthly treatment period
- Replication: \(n = 5\) species\(^{-1}\) period\(^{-1}\)
- Colony sizes: *L. pertusa*: \(3 \pm 2\) and *M. oculata*: \(65 \pm 22\) polyps
- Closed cell incubation: 6 h duration
- Parameters measured:
 - Calcification (via total alkalinity)
 - Respiration (via O\(_2\) electrodes)
 - DOC (dissolved organic carbon) net flux (via HTCO)

Physiological measurements

Results

- *L. pertusa* key physiological processes show effective acclimatisation to persistently modified ambient temperature
- Species-specific response to lowered temperature is indicated by decline in *M. oculata* calcification and respiration rates

Summary

- Thermal acclimatisation in CWC indicates species-specificity
- *L. pertusa* metabolism and growth show thermal acclimatisation
- *M. oculata* physiological rates decrease with lowered temperature
- CWC DOC fluxes appear uncoupled from ambient temperature

Conclusions

Species-specific thermal acclimatisation capacity may likely affect the regional occurrence and distribution patterns of key CWC reef-builders. Thermal acclimatisation may further represent an essential physiological feature to withstand climate change related temperature anomalies importantly affecting overall deep-sea reef functioning by sustaining continuous CWC ecosystem engineering capacity.

Acknowledgements

Funded by the Principality of Monaco and EU HERMIONE project (Grant Agreement Number 226354). The authors are grateful to D. Allemand, C. Rottier, S. Sikorski, S. Reynaud (CSM Monaco); A. Sygut and P. Gilles (Musée Océanographique de Monaco), M. Tavani (ISMAR-CNR Bologna); crews of RV URBANIA and Garcia del Cid; J.M. Gili, G. Tsounis, A. Gori, A. Olariaga (ICM-CSIC Barcelona).

cova@st.ieo.es malik.naumann@zmt-bremen.de